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The problems of DSC non-linear theory, connected with the dependence of the 
thermophysical parameters upon the temperature, are discussed. The changes in thle 
form of the thermal energy curve recorded by the device as results of the therma- 
conductivity jump and heat capacity shift taken into account in the course of trans- 
formation are shown. A correct non-linear DSC model is formulated. The mather 
matical apparatus and some simplifying notions for calculation with the non-linea- 
model are suggested. The interpretation of a calorimetric curve of an adiabatic scan. 
ning microcalorimeter over a pretransition range of temperatures is given as an example 

The theory of any method of measuring involves at least two aspects. One of 
them is related to the problems of designing a device, whereas the second deals 
with the interpretation of the results obtained. It  is to some problems of the 
latter aspect that our study is devoted, in particular to non-linear effects and 
non-linear theory in scanning calorimetry. 

In 1963-64  there appeared an original thermal method of physico-chemical 
investigations - differential scanning calorimetry (DSC), based on an entirely 
new principle of  measurement, viz. by recording thermal energy compensating 
temperature imbalance in the cells [l, 2]. The development and successful ex- 
ploitation of the corresponding calorimeters proved them to be of  great promise 
in solving a number of  problems [3, 4]. 

However, the rapid introduction of new complex methods of analysis results 
in a large amount of  new and highly promising information, and the fact that 
the use itself and development of the method pass through a number of stages 
is sometimes ignored. Any method, especially a universal one, is sure to pass 
through the phase of a simplified interpretation. The possibilities of  this stage 
being exhausted, the method should either be further developed or turn from 
being a method principally giving new information into a routine laboratory 
one. The latter fact is evidence of a limited power and peculiarity of  the met- 
hod. 

All this concerns both the problem of device designing and to a greater extent 
the problem of interpretation of the results of measurement. It  often happens 
that the possibilities which good, high-grade equipment might give become 
negligible because of imperfect interpretation. 
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From our point of view, approximately the Same intermediate situation can 
be seen in the use of DSC, especially when this method is applied for kinetic 
and thermophysical investigations. On the one hand, highly-sensitive apparatuses 
have been developed, and on the other there exist a number of well-developed 
model representations [4, 5] for interpretation of the experiment. This might 
seem good at first glance. However, the trouble is that the theoretical models are 
too idealized and far from the real experiment conditions. 

Anomalies in the behaviour of thermophysical parameters with temperature. DSC 
lheory with thermal conduction jump an heat eapaeity shift taken into account 

The main feature of modern DSC theory is the linearity of the models under 
consideration. In fact, due to the functional, very often considerable dependence 
of the thermophysical parameters on temperature, the correct model must be 
essentially non-linear. It is well known that the heat capacity C greatly depends 
on temperature T, especially in the pretransition region. Figures 1 and 2 show 
typical anomalies in the behaviour of specific heat capacity with temperature for 
neptunium dioxide [7] and polytetrafluoroethylene [8]. 

The data on the dependence of thermal conduction 2 upon the temperature 
are less known and not so numerous. The curves of 2 changes for natural and 
vulcanized rubber are given in Fig. 3. In the authors' view, the thermal conduc- 
tion jumps correspond to the phase transitions denoted by the arrows [9, 10], 
but it was not possible to measure them directly. All the curves 2(T) prove to 
be of the same specific shape, having a sharper slope at high temperatures. Figures 
2 and 4 give 2 data [8] for polytetrafluoroethylene and phenol-formaldehyde 
resin. The corresponding results speak in favour of sharp changes in the phase 
transformations of both the heat capacity and the thermal conduction of the 
substances under investigation. A great dependence of 2 on T in the definite 
temperature ranges is characteristic of different porous and composite materials, 
especially those containing moisture, even when no transformations take place. 
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Fig. 1. Anomaly of neptunium dioxide heat capacity 
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To illustrate the changes caused by the dependence of thermophysical param- 
eters on the temperature, let us consider the modern DSC theory for the sharp 
transitions [5], having introduced for simplicity only the thermal conduction 
jump and the shift of the specific heat capacity during the transformations. In 
accordance with [5] we shall consider that the calorimeter cell (Fig. 5) can be 
represented by the isothermal platform at the temperature Tv, which is connected 
with the temperature source T s via the equivalent thermal resistance R and the 
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Fig. 2. Thermophysical properties of polytetrafluoroethylene 
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Fig. 3. Heat conductivity of natural and vulcanized rubber 

12 7. Thermal Anal. 13, 1978 



372 G U S E N K O V ,  K R E S T O V :  N O N - L I N E A R  T H E O R Y  I N  D S C  

heat flow meter A, where Ts changes linearly with the speed 4. The sample, 
representing a fiat homogeneous slab, is in ideal thermal contact with the plat- 
form. The equivalent scheme of such a cell is shown in Fig. 6. 
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Fig. 4. Heat conductivity of phenol-formaldehyde resin with glass fibre 
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Fig. 5. Block-scheme of DSC cell 

T r denotes the transition reaction temperature, and x the thickness of the 
sample layer which undergoes transformation (a liquid phase). Thus, on the basis 
of three expressions: 

dx 
q = Spr l -~ -  + A C p S ~ x  ; 

s ( ~ p -  T,)  . r ,  - 7"~ 
q -  , q =  

rx + A r6 R 

it is possible to derive the following differential equation for the thermal energy: 

dx 
p~l(RS + Ar6 + rx) ~ -  + r A C p ~ x  2 + A C p ~ ( R S  + Ar6)x = Ot (1) 
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where S, r, Ar& AC and p mean the area, the thermal resistance, the jump of 
the thermal resistance, the shift of the specific heat capacity and the sample 
density, respectively; q is the heat effect per unit weight of the substance; and 
t is the time. 

Let us consider two limiting cases: 

a) AC = 0; At& ~ 0 b) AC v L O; At?)= 0 

It is clear that in case a) the solution of Eq. (1) will be as follows: 
for the instrumental limitation (R ~ co): 

Ct 
q - -  - -  q N  (2) 

R 

where qN is the thermal energy in accordance with the O'Neil theory [5]; 
for limitation by the sample (R ~ 0): 

Sq)t 
q = / r~tZ .... (3) 

Ar& \ /  1 + pqAr2&Z-- 

In case b), when R ~ oo" 

q : q x -  RqAC[ 1 - e x p ( - -  A~C~-t)] 

at small t: 

at large t: 

(4) 

~ t  

q l  = R = q N  (5 )  

ql - R A C  - qN -A-Cqg~ (6) 

When R ~ 0: 

q ~  q2 

at small t: 

at large t: 

2A Cr ~ i ; r ) - X [  t r/ { 1 - e x p  2ACqgtt] 
AC 2 ~ A C  2 ~1 J 

, ( 7 )  

q ~ -  

q, ,=s ~ / - P ~  = qN ; (8) 

2 A Crt 2 A Cfbt (9) 
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Fig. 6. Equivalent scheme of DSC cell 
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Fig. 7. Heat  power dependence upon time in DSC for the case of limitation by the sample. 
qN -- according to O'Neil 's  theory; q -- taking into account  heat conductivity jump 
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Fig. 8. Heat power dependence upon time in DSC, qNl,, for R--*oo ; and R--*0 according to 
O'Neirs  theory respectively; ql,2 for the same cases taking into account the shift in spec- 

ific heat capacity 
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On the basis of Eqs (2) and (5) it follows that the thermal conduction jump does 
not influence the results of the theory in the case of the instrumental limitation. 
It is only at large t that the shift of the specific heat capacity appears. One should 
bear in mind, however, that when R is large the situation cannot be of  much 
interest, as in such a case the properties of the sample and the character of the 
transition in it are eliminated completely. In this meaning the case of limitation 

ql Ar;~0 ~ AC#O 
R ----0 

t 

Fig. 9. Heat power dependence upon time for the case of limitation by the sample taking 
into account both heat conductivity jump and specific heat capacity shift 

by the sample is more informative from the practical point of view. From expres- 
sions (3) and (9) it follows, however, that with R --+ 0 the behaviour of q differs 
noticeably with time from the one predicted by O'Neil's theory. In Figs 7 and 
8 the corresponding relationships for q and qN are represented. In Fig. 9 the 
thermal absorption curve is given, taking into account both the thermal conductiv- 
ity jump and the specific heat capacity shift of the sample on transformation. 

Thus, taking into consideration the anomalies in behaviour of 2 and C in phase 
transitions results in an appreciable change of the curve form of the recorded 
thermal energy. Thus, for instance, for chymotrypsinogen [11 ] 

cal cal 
AC ~- 0.15 , t/ ~_ 2 - 6  (depending 

g- degree g 

on the pH), and the transition temperature range is approximately 20 ~ It follows 
that the contribution, for example, of the exponential term in expression (7) will 
differ from 1 (according to O'Neil) by a value exceeding 30 ~.  

Analytical expression of the dependence of thermophysical parameters on tempera- 
ture. Non-linear model of DSC 

Unfortunately, in the publications up to now there are not to be found any 
strictly-based recommendations on the character of thermophysical parameter 
changes in the course of transitions. For this reason, to decide this problem the 
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authors will have to resort only to a formal description [12] based on the experi- 
mental data. In this case one can follow two paths. 

The first method is based on introduction of empirical relationships of C(T) 
and 2(T). It is known [13] that in second-order phase transitions the specific heat 
capacity has the appearance of a 2-like function (Figs 1 and 2). It is for this reason 
that the temperatures corresponding to such transitions are often called 2 points. 
In their turn, ,l-curves can be approximated fully enough by an expression such as 

C(T)= C~ + Ae(T- T~ + Be + DcTS+l [ ~ T )  �9 T s exp - (10) 

where Ae, Be, De and s are some constants, and q5 may sometimes be associated 
with the energy of new phase formation (point defect). 

In this expression the peak corresponds to changes in specific heat capacity 
in connection with a phase transition, and linear segments correspond to ordinary 
temperature variations before and after the transformation. 

In the case of first-order phase transitions, Cp tends to infinity. This means that 
the transformation from one phase into another takes place with a jump. In their 
turn, the necessary conditions for this jump are the absolute purity of the sub- 
stance and its homogeneity. The presence of impurities, various microdefects, 
structure heterogeneity, bonding with solvent, etc. finally all result in extension 
of the phase transition over some temperature range. Further, it is quite evident 
that any instrument, on account of inertia inherent to it, responds to any instan- 
taneous transformation with some delay, and this is also one of the reasons why 
the extension takes place. Therefore, even without taking into account the phenom- 
ena of premelting, Cp appears practically to be some finite function of T (Fig. 1). 
Thus, considering the real situation, in this case as well one should think it expedi- 
ent to represent approximately the dependence of Cp(T) in terms of some extreme 
asymmetric function T like that of (10). 

In this way the suggested method allows one to describe the influence of phase 
transitions of types I and II on the temperature of the sample uniformly, the 
transitions differing both in function amplitude Cp~(T) and in the asymmetry 
magnitude. 

Thermal conductivity usually changes in direct relation or in inverse relation 
with heat capacity (Fig. 2). For this reason the function 2(T) may be described 
as well as for C(T) by the expression 

B~ + D~TS+I ( ~ff~) 
2(T) = 2o + Ax(T- To) + T" exp [ -  (11) 

The second method is based on the property of additivity of the heat capacity 
of the system. If, for example, the first-order phase transition takes place, the 
total heat capacity of the sample at any separate moment may be written as a sum 
[3]: 

C =  C2~+ C!(1 -cO 
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where ~ is the extent of conversion and C1 and C2 are the heat capacities of the 
sample before and after conversion, respectively. The disadvantage of this method 
is that it is fully applicable only to invariant heterogeneous transformations. For 
second-order phase transitions or chemical reactions, such a description either 
does not apply at all or appears irrational. Of course, in a number of situations 
one could get satisfactory results by taking Ca and C2 as functions of temperature 
or time. But finally in such a case we would come to the first variant. There is 
another important thing one should not forget. The thermal conductivity coeffi- 
cient has no property of additivity and because of this cannot be characterized 
by means of the second method. 

Summing up the considerations of the two methods of analytical description 
of the behaviour of C and 2 in the course of transitions, it should be admitted 
most expedient to represent these parameters in the form of empirical temperature 
relationships. 

Taking into account expressions (10) and (l 1), the non-linear mathematical 
model of DSC may be formulated in the following way: 

? 
2i(Ti) + 2i(T/) _ ( i -  1)ZHi9 t �9 (12) Ci(Ti)Pi Ot - Ox x ' 

B d + D e i T T + t e x p [ _ _  4 ) (14) 
Ci(Ti) = Ci~ + Aei(Ti - To) + T s ~ i  

B ~ i + D z i T i S + l e x p (  - ( 9 )  
2i(Ti) = 2i~ + Aai(Ti - T~ + T] ~ i i  

Pi = pi(t); T,(x, 0) = T o 

)~i(Ti) x=o = qi(t) ; )~i(Ti) r 'ix=a = q(Ti) 

i =  1,2; K =  1,2,3.  
Ta-~2 

DSC: qi(t) = qio +- 5qi(t); 

q(Ti) = a(Ti41x:a - T4o.t); 

(15) 

(16) 

(17) 

(18) 

ADSC: qi(t) = qio +-- 5qi(t); 

q ( ~ )  = o 

where T~ is the temperature in the reference cell (i = 1) or in the sample cell 
(i = 2); To, t is the outside temperature; Ci, 2i and Pi are the specific heat capacity, 
thermal conductivity and density of the sample and of the reference, respectively; 
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x is a coordinate; t is time; ~ is the extent of conversion;f(a) is a function charac- 
terizing the order of the reaction; Z is a pre-exponent; E is the energy of activa- 
tion; a is a radiation coefficient; qio is the density of constant heat flow; 5qi is 
the density of heat flow compensating for temperature imbalance in the cells; 
A is the thickness of the substance layer or Solution in the case of a flat cell 
(K = 0) and the radius of cylindrical (K = 1) or spherical (K = 2) cells; and 
AH is the latent heat of conversion in the case of a first-order phase transition 
and the heat effect in the case of a chemical reaction. 

If  a reference is thermoinert, then Be1 = Dcl = Ba~ = Dxt = 0. An important 
feature of the formulated model is that it suggests variations in density of the 
substance under investigation depending on time. This is a very important fact, 
especially when the transformations take place with the evolution of a gaseous 
phase. 

Note 1. First-order phase transitions usually correspond mathematically to 
Stephan's problem. It is known, however, that solution of such problems causes 
some difficulties. And if one takes into consideration the fact that both C and 
2 change greatly with temperature before and after the transition, all the difficulties 
and practical failure of such attempts become quite clear. Therefore, the authors 
think expression in the form of the system (12)-(18)  to be more preferable. 
Further, taking into account that this allows us to cover all types of transforma- 
tions by means of one and the same model, the preference of  such an approach 
becomes even more evident. 

Note 2. Unfortunately, at present nothing is known about changes in heat 
capacity and thermal conduction in the course of chemical reactions. 

It is not probable that they Would differ greatly from corresponding variations 
on phase transitions. Thus, the mode of recording of functions 2(T) and C(T) is 
also preserved in the case of  irreversible conversions. This is also favoured by 
the circumstance that both C and 2 include a number of constant coefficients 
determined from the experimental data. 

The latter allows one to modify to a great extent corresponding functional 
dependencies. 

Mathematical apparatus 

In order that the mathematically very complex non-linear model formulated 
by us should prove to be fruitful, it was necessary to find methods of solving 
partial differential equations which would be effective enough for application 
to the analys.is of thermal behaviour in comparative calorimetry. 

It should be taken into account that they must be not only simple enough, but 
also accurate. It was established, however, that such a universal method does not 
appear to exist. Nevertheless, two methods are near to it - the integral one [14] 
and the Kantorovitch method [15]. The former method is rather simple, but not 
sufficiently accurate. The latter has good accuracy under conditions of the correct 
Choice of basic functions, but this is not always easy to do. 
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One may choose the integral method as the basic mathematical  procedure 
because of the two following circumstances. Firstly, this method, as a rule, leads 
to a great error for small Fourier number values, when the heat process is not 
established. Taking into consideration that the DSC measurements are usually 
carried out long after switching on the warming-up, it is possible to assume the 
temperature distribution in the cells to be quasi-stationary. And in this case, the 
integral method gives quite acceptable accuracy. Secondly, as will be seen later, 
the energy characteristics of  the processes under investigation are of  great interest 
(e.g. the energy of compensating heat flow). The integral method, in its turn, 
being virtually a mathematical  interpretation of the heat flow conservation law, 
proves to be accurate with reference to the latter. Therefore, when we speak about 
the use of energy functions for determining some characteristics of  physico- 
chemical transformations, rather good results may be expected f rom the integral 
method. 

In short, the essence of this method is as follows [121: The solution of a one- 
dimensional non-stationary heat-conduction equation is searched for in the form 
of  some function of coordinate x and time t. (For example, x is a polynomial 

~T 
f l (T)  c?t = V [f2(T)vT] (19) 

with unknown coefficients at(t), depending on t.) All a i ~ ( t )  are expressed from 
boundary conditions through one coefficient a~=~k(t ). The expression obtained 
for the temperature is substituted into the conduction equation. Both parts of 
the latter are multiplied by a form coefficient and integrated with respect to x 
within the boundaries. As a result, one has a common differential equation for 
ai-~,, which is solved in a usual way. After determining at=it, the rest of  a i ~  
are easily found by means of expressions determined before. 

We have worked out two forms of the combined method of solution of non- 
linear partial differential equations, specially for the cases with increased demands 
as to the accuracy [12]. The first of  these forms combines the advantages of  the 
Kantorovitch method and the integral one. Moreover, the latter is used on the 
one hand as a basis for developing basic functions according to the former, and 
on the other hand as a starting zero approximation. As a result of  this, the accuracy 
of solution in the first approximation increases as compared to the results of  the 
integral method. The answer is in the form available for any t, so it is not necessary 
to introduce the concept of  "thermal layer", and, consequently, to determine and 
coordinate two different expressions for temperature. The characteristic feature 
of  the proposed method is the possibility to make the solution obtained more 
precise. 

For one-dimensional problems, the essence of the combined approach is the 
following. The integral equation (19) is determined as a sum: 

T(x, t) = T~(x, t) + ~ ( x ,  t) (20) 
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where Tl(X, t) is some arbitrary function of x and t, and T~(x, t) is composed of 
a full system of functions of x. It is often convenient to represent T and T2 in 
a polynomial form: 

N N 
TI(X, t )  = ~ a n ( t ) X  n ; T,2(X, t )  = ~ b n ( t ) x  nr ; r ~ 0 

n=0 n=0 

Further, by substituting T into the boundary conditions and initial equation (19), 
all unknown coefficients an are determined. When solving the heat conduction 
equation, the integral method is used in that form in which it is used for large t. 
Thus, T1 proves to be integral equation (19) averaged over the existence region 
under prescribed boundary conditions. By substituting T2 into the uniform 
boundary conditions, some of the coefficients b n are expressed through the others. 
I f  the number of boundary conditions is equal to K, the number of independent 
functions bn(t ) will be equal to N - K + 1. Take the first N - K + 1 of the 
coefficients b n as independent. Then Eq. (20) will be 

N ~ K  
T(x ,  t) = ~. bi(t)Zi(x, t) + I)(x, t) 

i=0 

The functions Xi(x, t) can be regarded here as basic, and consequently the system 
of variant equations can be made up according to the Kantorovitch method for 
determining bi (i = 0 . . . .  N - K) .  It should be noted that the number of coeffici- 
ents an in T 1 is limited by the number of boundary conditions, i.e. a unit more 
than K. The quantity bn r 0 depends both on the number of boundary conditions 
and on the fact of what approximation is regarded. It is not necessary that the 
corresponding series should begin with the zero degree as regards x. 

By means of the method mentioned above, a solution to any degree of approxi- 
mation to the accurate one can be obtained. It should be remembered, however, 
that when solving non-linear problems, one can meet with the necessity to con- 
sider a system of non-linear, ordinary differential and algebraic equations. This 
often causes great difficulties, and naturally leads to limited practical application. 
Hence, in a number of cases, it is reasonable to use another variant of the com- 
bined method, which does not require solving the system of non-linear equations, 
at least at the stage of specification of initial approach [12]. 

Key equation and the "ignition" criteria 

The mathematical methods discussed above make it possible to do any analyt- 
ical calculations. In a number of cases, however, this procedure is rather difficult 
and final results are cumbersome. The problem is simplified by using computers, 
but the computer method of solution has its disadvantages. Accordingly, it is 
very important to make the calculation technique easier for the common model, 
because this makes the latter more available for analysis by simple means. For 
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this purpose two concepts are introduced - the key equation and the "ignition" 
criteria. 

Reduce Eq. (12) to (21): 

[Co + Ac(T - To)] --~T = G(T, x, t) + F(T, x, t); 

a { [  aT} k a T .  
G(r,x,t)= ~x 20 + A~(T- To) ] ~  +--x [2~ + Az(T-T~ ax ' 

(21) 

F(T,x,t) =~x  T s exp - 0x + x T s 

[ f iT} aT Be+De Ts+I ( r } aT ac~ �9 exp - , ax T ~ exp - ~  ~[-+_ AH-at 

At small conversion degrees the structure of Eq. (21) for reversible and irreversible 
process will be determined by the character of the operator G(T, x, t). Thus, at 
the initial stage of transformation and in a dilute sample at any moment of time, 
the behaviour of the temperature in the cell will be the same for any process. 
We shall name this equation the key equation. Two facts make it especially valu- 
able. Firstly, its solution determines the behaviour of the base-line. Secondly, 
(together with the "ignition" criteria introduced below) it permits one to find 
some kinetic parameters of the process, without solving the entire equation 
system of the non-linear model. 

The complete solution of the key equation is given in [16, 21 ] for the cells of 
three classical forms: slab, cylinder, sphere. 

Another factor which promotes simplification of calculations connected with 
the non-linear model is the introduction of the concept of the "ignition" criteria 
[17, 18]. This term was proposed for the first time in the work [19] considering 
combustion processes. However, the idea of the approach is due to Zeldovitch 
[20]. 

According to the criterion, physico-chemical conversion taking place in the 
course of warming-up begins to be displayed only from the moment when the 
thermal energy evolved or absorbed becomes equal to the thermal energy of 
the external sources, qex" Determining the temperature T, from the experimental 
data (or the time moment) corresponding to the equality of the heat flows, and 
substituting it into the equation of heat balance, 

A 

...jinx.( - -  

0 

can be determined by varying the scanning speed, activation energy and various 
complexes including thermophysical parameters. It is characteristic that in order 
to use the "ignition" criteria, the thermal conduction equation should be solved 
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ignoring the transformation process. In other words, the system of three equa- 
tions is reduced to one. If  2 and C do not depend on T, the thermal conduction 
equation and boundary conditions are linear and, consequently, are easily in- 
tegrated. 

Denote the thermal energy evolved or absorbed in the conversion process as q,, 
and those of all sources in the reference cell and sample cell, respectively, as ql 
and q2. 

In differential scanning calorimetry it is useless to speak about the comparabil- 
ity of heat flows from the external sources and the flow accompanying the trans- 
formation processes in a single cell, because, as a rule, qr ~ ql" However, if the 
DS C  curve is considered to correspond to the temperature of  some third hypo- 
thetical medium heated by a heat flow q2 - q,, the application of the "ignition" 
criteria is quite justified. In this case, the value qex should be substituted into 
Eq. (22): 

q e x ( r z )  -= II q2(Tz)  [ - I q l ( Z z )  I1 

For the fixed sample point the "ignition" criterion will have the following form: 

A H Z  = q*2P(T,) [ - [q~P(T~)/ (23) 

where q~P(T~) and q~P(Tz) are the specific thermal energies at the moment when 
7"1 = T2 -- Tz, and which should be fed into the sample and reference cell, re- 
spectively, in order that Tl(t) - T.z(t) at the thermocouple locations. 

The expression for the activation energy is easy to obtain from (23): 

- (CI'a 42) Tz,(Tz, T~)  ' 

To summarize the above, it may be said that the "ignition" criteria enable us: 
1. In the case when the thermophysical parameters do not depend on tempera- 

ture, to replace the analysis of a three non-linear equation system of the DSC 
model by the integration of one linear equation, the exact solution of which is 
known. This is just the typical situation when the "ignition" criteria may be an 
express method of evaluating the activation energy in a quick and simple way. 

2. In the case when the parameters depend on temperature, to reduce the system 
of three non-linear equations, the solution of which is very difficult, to one non- 
linear equation without a source, the approximate integration of which presents 
no difficulties. 

Interpretation of microcalorimetric curve of ADSC 

To illustrate the possibilities of the non-linear model and the suggested mathe- 
matical apparatus, we shall dwell upon the problem of  interpretation of a micro- 
calorimetric curve of an adiabatic differential scanning calorimeter (ADSC). For 
the sake of simplicity we shall analyze the part which precedes the transformation 
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process. According to the authors' terminology [11 ], this part corresponds to the 
predenaturation stage�9 Further, we shall assume the dependence of the thermo- 
physical parameters upon the temperature to be linear�9 This approximation is 
sufficiently good, for example, for water�9 Actually, the volumetric heat capacity 
is strictly linear up to the boiling temperature, and the thermal conductivity has 
only a slight curvature at T ~ 70 ~ 

The detailed solution of the problem is given in [21]. The analytical expression 
for the recorded energy given by the authors is as follows: 

2(}ql - }~2) (k + 3)(1 + ~) I 2()~11 - -)~12 
Q =  (k + 1)(1 + 7) 0 + (k + 1)(1 + 7)Qo L(k + 1)(1 + 7) + 

2Qo ] 4(k + 3)(l + ~)2 [_ 2(~11~ "~2) 
+ ~ +  r (G~ - c~,).l ~  + (k + 1)~(1 + ~)"Q~ [(k + 1)(1 + 7) 

+ 

(24) 
2Q0 4(k + 1) 

-}- 1 +--~- (C12 -- Cll) + (k + 3)(1 -Jr- ~)2(1 + 7) 2 [(Cll -- C12) (G1 - -  

-I ~[1 4(k + 31(1 + ~) ] 
- -  A l l -  ~L~12) - -  C12~1/O [3 i  -~- . . . . . . .  4!(k + 1)(1 + 7)Q0 O + . . .  j ;  

Col )~Ol 
= Co,, '  v ;~o~ 

Here Q, O, C~j and 2is are dimensionless power, temperature and variables of 
volumetric heat capacity and thermal conductions of the reference (j = l) and 
the sample (j = 2) ceils, respectively [21]. 

From (24) it follows that the dynamic component of the sample heat capacity 
is only a constituent of the non-linear part of the general dependence of Q upon 
the temperature. The linear part of the curve is characterized exclusively by the 
thermal conductivity of both the reference and the sample. It is quite evident 
that, depending upon the correlation between the dynamic components 2 and C, 
the behaviour of the calorimetric curve may have the form of either an increasing 
or a decreasing O function, with formation of a plateau or without saturation. 

On the basis of the results obtained, we shall analyze the experimental data 
of the work [22] for dilute solutions of cyanomet-myoglobon MbCN. Since the 

cal 
volumetric heat capacity of MbCN in aqueous solution at T -- 20 ~ is 0.55 . . . . . . . . . .  

g.deg ' 
the following inequality should be fulfilled: 

All -- )~12 < 0 

The latter means that the calorimetric curve will have a saturation region, as it 
follows from the experiment only at C12 < 0 and IC12I < JCn]. In other words 
the volumetric heat capacity of cyanomet-myoglobin increases with temperature 
rise, the temperature coefficient being higher than that of water heat capacity. 
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In [21] it is shown that for Q at the transition temperature into the saturation 
region O.a t the equation is as follows: 

Q = Qo O,a,(C11 - C12) 

or passing to dimensional values: 

C~1 C~2 QC~Co~CoMbCN 
�9 C o  1 C o  2 - ( rsa  , __ To ) QinCol ( 2 5 )  

Here ~ is the concentration of MbCN in solution, and COMbCN Cm and Co2 are 
the volumetric heat capacity of protein, solvent and solution, respectively, at 
T = 20 ~ 

QoO~CMbcN 
Oin - Col 

Assuming, for example, that the plateau region for a solution concentration of 
1.36% and pH = 9 is reached at Teat ~- 63 ~ according to (25) we shall have 
a component in the mixture provided that the heat capacities are additive. 

cal 
CSPMbCN ,~" 10-2 _ _  

g'deg 2 

It is to be noted that the obtained value of the temperature coefficient of  the 
partial cyanomet-myoglobin heat capacity is the upper boundary of the real value. 
This is caused by the fact that, due to superposition of the denaturation process 
and smooth transition into the saturation region, the temperature value Tsar 
does not seem possible to be exactly established. Taking this into account, we 
have only to state that C~MhCN is in the range 

cal cal sp 
3"  10-~g.deg 2 < C~MbCN < 10 .2 g.deg 2 

Figure 10 presents an example of a microcalorimetric recording for cyanomet- 
myoglobin solution. The dot-dash line means a variable constituent of  the protein 

% 

4 ~, 

3o- 

20 30 40 50 60 70 80 
Ternperoture ~ ~ 

Fig. 10. Microcalorimetric record of the MbCN thermal denaturation at pH 9 and 1.36 % 
of concentration 
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heat capacity with the assumption that Z s a  t = 63 ~ From Fig. 10 it follows that 
while using a simplified interpretation the linear part proves to have a temperature 
coefficient value increased as high as 30 ~. In fact the error might be much larger, 
since the real straight line of the partial heat capacity dependence of MbCN upon 
T may be less steep in the fl sector. 

An important consequence comes from the fact that the plateau is the property 
of the linear dependence of C upon T. The specific heat capacity shift A Cp at 
the temperature of conformation transition changes with both the pH change 
and the denaturation temperature change. 

In conclusion, it should be noted that the analytical expression obtained for 
device-recorded microcalorimetric energy can also be used for the determination 
of the effective thermal conductivity of a sample. 
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RI~SUM.~ -- L'article discute les probl~mes concernant la th6orie de l'analyse calorim6trique 
diff6rentielle (DSC) non lingaire, en rapport avec le fait que les param~tres thermophysiques 
d6pendent de la temp6rature. On montre que les variations de forme de la courbe enregistr6e 
par l ' instrument r6sultent d 'un saut de conductibilit6 thermique et d 'un changement de 
chaleur sp6cifique lors de la transformation. On donne un module correct de DSC non 
lin6aire. On propose un traitement math6matique et quelques notions simplificatrices pour 
le calcul du module non lin6aire. On donne comme exemple l 'interpr6tation d 'une courbe 
calorim6trique fournie par un analyseur microcalorim6trique adiabatique, dans le domaine 
de temperature pr6c6dant la transition. 

ZUSAMMENFASSUNG - -  Der Beitrag er~Srtert das Problem der nicht-linearen DSC-Theorie 
im Zusammenhang mit der Abh~tngigkeit der tbermophysikalischen Parameter yon der 
Temperatur. Die ,~nderungen der durch das Get/it registrierten Form der W~irme-Kraft- 
Kurve rtihren, wie gezeigt wird, yon einer j~ihen ~nderung der W/irmeleitf~ihigkeit her und 
.~nderungen der W/irmekapazit/it spielen im Laufe des Prozesses ebenfalls mit. Ein korrektes 
nicht-lineares DSC-Modell wird formuliert. Der mathematische Apparat  und einige verein- 
fachende Begriffe zur Errechnnng des nicht-linearen Modells werden vorgeschlagen. Als 
Beispiel wird die Interpretation einer kalorimetrischen Kurve eines adiabatischen Scanning- 
Mikrokalorimeters gegeben, das den Vor-Obergangs-Bereich yon Temperaturen erfaBt. 

Pe3IoMe - -  B HacToamea pa6ore paccMaTprtBalOTCa Borlpoct,I I-IeJItlHe~rlo~ TeoplIv/ ,~CK, CBlt- 
3aH~r~te c 3aBHC~VIOGTIalO Tert~od~3HqecKax napaMeTpog OT "reMnepaxypbL HoKa3~mae'rcn 
KardtM H3MeHertnmvt B dpopMe perrIcTprIpyeMo~ nprt6opoM Ten~tonogt MOLI~HOCTH npaBo~T yq~T 
cra~tra TeI/J'IonpoBO,RHOGTIeI H C./~BHFa TeIIYlOeMI(OCT/r B XO2Ie i~peBpau~ett~t, qPopMyJ]rlpyeTc~ 
cTporafl Hen~trIe~rIaa Mo~eJn, ~CI(.  Hpe~lJ~araeTcfl MaTeMaTrlqecrrt~ annapaT !4 neKoTop~,ie 
ynpoma~omHe IIOH~ITH~I )lJ'l~I pacq~TOB riO lteYlItHe~Ho~ MO~enH. B Ka~IecTBe npHMepa paccMaTpr~- 
aaeTc~t Bonpoc 06 rinTepnpeTattvta ranopaMeTpI~IeCKO_~ Kprmo~ a~Ha6aTH,fecKoro )xnqbqbepeH- 
tIHa~bHoro ci(aHHpyionlero MHKpoKanoprtMeTpa B npe~nepexo~rtoit o6J~acTr~ TeMnepaTyp. 
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